Chapter 4

Isomers: The Arrangement of Atoms in Space

Paula Yurkanis Bruice University of California, Santa Barbara

Different Configurations

<section-header><section-header><section-header><section-header><image><image><image>

A Chiral Compound is optically Active

Compounds with two Asymmetric Centers

Two Asymmetric Centers: Three Stereoisomers (a meso compound and a pair of enantiomers)

Physical Properties of Stereoisomers

